Схема принципиальная компьютерных колонок genius sp. Ремонт компьютерных колонок своими руками

Один хороший знакомый приобрёл солидную аудио систему, а мне отдал миниатюрные пяти ваттные колонки «Genius», вид которых показан на ФОТО 1.
Колонки, конечно же, не новые – углы декоративной панели уже протёрлись, а пластмассовый корпус в некоторых местах выцвел. Но, всё равно, спасибо, так как у меня в то время только появился ноутбук, и колонки на первое время были очень кстати. Подключил как полагается и слушал. Для выключения использовал только кнопку «Power», а сетевой шнур из розетки ~220V не выдёргивал – лень было лезть за холодильник. А потом, месяцев через четыре, случайно услышал еле-еле заметное «гудение» - оказывается, звук раздавался из выключенной активной колонки. Как говорится, «предчувствия его не обманули» - разобрав колонку, убедился, что выключатель «Power» - это никакой не «Power», а банальный перевод микросхемы УМЗЧ в режим «ST.BY», т.е. с самого начала всё это время трансформатор постоянно был подключен к сети ~220V. Как-то не аккуратненько получается, господа-товарищи китайцы! Вот тогда я и решил изменить схему подачи и снятия сетевого питания на активную колонку, а заодно встроить приёмник.

Перед регуляторами громкости установлены цепи частотной коррекции и регуляторы тембра по высокой частоте. В качестве УМЗЧ работает микросхема DA1 типа BA5417. Чтобы включить микросхему, надо замкнуть кнопку-выключатель с фиксацией SA1, при этом на вход «ST. BY» поступит напряжение питания. В даташите указано, что для активации микросхемы на этот вход должно подаваться напряжение с уровнем от 3,5V до Vсс. В процессе доработки конденсаторы С7 и С9 были заменены на конденсаторы ёмкостью С=1800pF (это снизило средние частоты и высокие стали звучать более утончённо), а конденсатор С16 – на конденсатор ёмкостью С=100nF (управление выводом 8 DA1 стало электронным, поэтому нет необходимости в большой ёмкости).
Идея была такая – после подачи сетевого питания на колонку, микросхема УМЗЧ активируется и определённый промежуток времени «ожидает». Если на аудио входах нет сигнала, то микросхема переводится в режим «ST. BY». Если входной аудио сигнал продолжает отсутствовать ещё некоторое время, то происходит полное отключение колонки от сети ~220V. Эти состояния обозначены разным типом индикации (светодиод HL1 работает в другой цепи) и разделены звуковыми сигналами. Кнопка выключения питания не нужна – теперь достаточно «запарковать» ноутбук (или выключить приёмник) и колонка автоматически отключится от сети. Находясь в другой комнате, по звуковым сигналам можно отследить текущее состояние колонки. Чтобы не «заморачиваться» на изготовление тоновых генераторов, в качестве источника контрольных сигналов применён бывший в употреблении квартирный звонок с батарейным питанием и возможностью выбора мелодий. Схема звонка показана на РИСУНКЕ 2.

Разберём работу узла автоматического отключения по принципиальной схеме, показанной на РИСУНКЕ 3. Схема не сложна и выполнена на распространённых деталях. Позиционные обозначения элементов продолжают нумерацию со схемы на РИСУНКЕ 1.

1.Включение активной колонки.

Для этого кратковременно нажимают кнопку без фиксации SA1. Тогда питание со стабилизаторов напряжения DA2 и DA3 поступит на все узлы схемы. Конденсатор С45 сформирует импульс уровнем лог.0 на входе «М1» звукового модуля и он начнёт воспроизводить первую мелодию. Импульсы ШИМ-сигнала с выхода звукового модуля установят триггер DD2.1 в «нулевое» состояние по входу «R», а триггер DD2.1, в свою очередь, лог.1-цей с выхода 12DD2.1 установит в «нулевое» состояние триггер DD2.2. Реле К2 и К3 останутся обесточенными, а двухцветный индикатор HL2 выключенным. От лог.1-цы на выходе 3DD3.1 в ячейках выдержки времени начинают заряжаться конденсаторы: С37 через резистор R25, С38 – через R26 и С39 – через R27, поэтому, на выходах логических элементов DD3.2, DD3.3 и DD3.4 будут лог.1-цы. С выхода 4DD3.2 через R33 лог.1 откроет транзистор VT5 и реле К1 сработает. Контакты К1.1 зашунтируют кнопку SA1 и напряжение сети ~220V будет постоянно подаваться на трансформатор Т1. С выхода 11DD3.4 через R34 лог.1 должна активировать УМЗЧ DA1, но, пока поступают импульсы ШИМ-сигнала на затвор VT6, он разряжает конденсатор С16, запрещая включение DA1. Когда музыкальный фрагмент закончится, транзистор VТ6 закроется, разрешив работу УМЗЧ DA1. Одновременно (или немного раньше) зарядится конденсатор С38. На входах 8,9DD3.3 теперь лог.1 (диод VD13 открыт лог.1-цей с выхода 11DD3.4), поэтому, лог.0 на выходе 10DD3.3 включит индикатор питания HL1.

2. Ожидание подачи входного аудио сигнала.
Пока аудио сигнал не подан на вход XS1 или на вход XS2, как указывалось выше, от лог.1 с выхода 3DD3.1 заряжаются конденсаторы в ячейках выдержки времени, причём С38 зарядится первым и элемент DD3.3 переключится, при этом индикатор HL1 постоянным свечением укажет, что DA1 находится в рабочем режиме. Через время, определяемое номиналами R27 и С39 (чуть более 4-х минут) переключится элемент DD3.4, и на его выходе 11DD3.4 появится лог.0. Этот лог.0 через R34 поступит на вход «ST. BY» микросхемы DA1 и переведёт её в режим пониженного энергопотребления. Конденсатор С47 сформирует короткий импульс на входе «М3» звукового модуля и заиграет вторая мелодия. Диод VD13 закроется, а так как элемент DD3.3 вместе с резистором R32 и конденсатором С43 образуют генератор импульсов, то индикатор HL1 начнёт мигать с частотой F=2…3Гц. Получили режим, который был реализован в колонке до переделки, только индикатор HL1 «Power» теперь мигает. Далее, приблизительно через 6-ть минут переключится и элемент DD3.2. С его выхода 4DD3.2 лог.0 выключит индикатор HL1, а через С46 запустит третий музыкальный фрагмент. Через R33 должен закрыться VT5, но этого не произойдёт, пока мелодия не доиграет до конца, т.к. импульсы ШИМ-сигнала через диод VD14 заряжают конденсатор С44, который удерживает VT5 в открытом состоянии. По окончании мелодии С44 разрядится через R33, транзистор VT5 закроется, реле К1 отпустит и колонка отключится от сети ~220V. За счёт обратной связи с выхода 4DD3.2 на вход 2DD3.1 эти элементы превращены в одновибратор-защёлку. Поэтому лог.0, появившийся на входе 2DD3.1 делает процесс выключения колонки необратимым. Сделано это чтобы отсечь манипуляции с источником усиливаемого звука, т.е. любые возмущения на входах XS1 и XS2 при отключении колонки.


3. Подача входного аудио сигнала.

На микросхеме DD1 построен двухканальный аналоговый усилитель. С самого начала я отказался от объединения двух каналов посредством резисторного или транзисторного смесителя. С приведённым схемным решением входное сопротивление практически не изменилось и не уменьшилась глубина разделения каналов, т.е. узел не оказывает влияния на динамические характеристики схемы активной колонки. Каналы объединяются в точке соединения катодов диодов VD6 и VD7. В исходном состоянии на выходах 6DD1.5 и 8DD1.6 уровень напряжения составляет порядка 2-х вольт. На резисторе R23 это напряжение ещё меньше на величину падения на диодах. В результате на входе 1DD3.1 присутствует напряжение с уровнем лог.0-ля. Конденсаторы С30 и С31 – антипомеховые. При подаче МОНО сигнала на любой из входов XS1, XS2 или СТЕРЕО сигнала на оба входа одновременно, на резисторе R23 формируется напряжение сложной импульсной формы с уровнем немногим менее напряжения питания. Эти импульсы инвертируются элементом DD3.1 и поступают на ячейки выдержки времени. Диоды VD9, VD10 и VD11 периодически открываются и разряжают времязадающие конденсаторы, тем самым каждый раз как бы «отдаляя» процессы, описанные в пункте 2. В паузах между звуковыми треками конденсатор С38 успевает зарядиться (постоянная времени R26 - С38 относительно мала), поэтому элемент DD3.3 переключается и светодиод HL1 индицирует отсутствие сигнала на входах. При появлении сигнала, элемент DD3.3 переключается в исходное состояние и HL1 гаснет.


4. УКВ/FM-приёмник.

На микросхеме DD2 построен узел управления приёмником. Работает следующим образом: при первом нажатии на кнопку SB1 короткий импульс, сформированный антидребезговой цепью R12, С26, R16, поступит на тактовые входы «С» обоих триггеров. Так как до подачи импульса на входе «D» триггера DD2.1 была лог.1, то она запишется в этот триггер, а триггер DD2.2 не изменит своего состояния. Теперь триггер DD2.1 находится в «единичном» состоянии и на выходе 12DD2.1 – лог.0, а на выходе 13DD2.1 –лог.1, которая откроет VT2. Реле К2 сработает и своими контактами К2.1 и К2.2 переключит входные цепи усилителя на выходы декодера DA4. Одновременно лог.0 на выходе 12DD2.1 запитает зелёную секцию светодиода HL2, которая укажет на включенное состояние приёмника в УКВ диапазоне. Второе нажатие на кнопку SB1 состояние триггера DD2.1 не изменит, но переключит триггер DD2.2, т.к. на его входе «D» ранее появилась лог.1, а на входе «R» – лог.0. С выхода 1DD2.2 лог.1-ца откроет VT3 и сработает реле К3. Своими контактами К3.1оно отключит конденсатор С33 от катушки гетеродина приёмника, в результате чего приёмник перейдёт в FM диапазон. Одновременно лог.0 на выходе 2DD2.2 погасит зелёную секцию светодиода HL2, а лог.1с выхода 1DD2.2 включит красную секцию, указывающую на включенное состояние приёмника в FM диапазоне. Третье нажатие на SB1 запишет в триггер DD2.1 лог.0 с выхода 2DD2.2. На выходе 12DD2.1 появится лог.1, которая сбросит триггер DD2.2 в «нулевое» состояние по входу «R», т.е. узел управления вернётся в исходное состояние – приёмник выключится, индикатор HL2 погаснет, а к входным цепям усилителя опять подключатся разъёмы XS1 и XS2. В качестве приёмника может применяться любая модель дешёвого приёмника с автоматическим поиском станций, например, разного рода «PALITO», «MANBO», «POSSON», «SANLY» и тому подобная дребедень, которой завалены торговые точки. Приёмник получает питание от простейшего параметрического стабилизатора R30, VD12, C35. Для увеличения чувствительности добавлен апериодический каскад на транзисторе VT1, усиленный сигнал с которого подаётся на антенный вход приёмника. Способ заставить буржуйские приёмники работать в «советском» диапазоне известен давно. Для этого увеличивают число витков катушки гетеродина, либо параллельно подключают добавочный конденсатор с ориентировочной ёмкостью С= 30…40pF, что и сделано. В стерео декодере работает микросхема DA4 типа TDA7040. На вход DA4 сигнал с приёмника подаётся через фильтр R24, С34, улучшающий качество декодированного сигнала. Резистором R28 можно подстроить режим работы внутреннего опорного генератора, тем самым добиться лучшего разделения каналов. Неиспользуемый выход 7DA4 можно нагрузить на светодиодный индикатор наличия стерео сигнала.

5. Конструктив.
На РИСУНКЕ 4 показано назначение органов управления.

Первое, что нужно, это убрать в кнопке-выключателе SA1 фиксацию, затем перерезанием печатных проводников платы подготовить выводы SA1 и HL1 для работы в других цепях. Светодиод HL1 заменён синим сверх ярким. Телескопическая антенна WA1 к колонке крепится винтовым соединением. Корпус реле К3 желательно соединить с общим проводом схемы, а само реле расположить в непосредственной близости от платы приёмника. Плата встраиваемого узла крепится к плате УНЧ винтами через пластмассовые стойки. Вместо музыкального модуля от квартирного звонка можно применить любую «мулюлюкалку», даже плату от детского музыкального «сотового» телефончика – там куча всяких звуковых эффектов. Схема доработки легко упрощается – удаляются музыкальный модуль или приёмник с узлом управления, или всё вместе. А можно вообще практически ничего не делать - выключатель SA1 установить в цепь первичной обмотки трансформатора Т1 и всё. В конечном итоге, всё зависит от интереса и желания. Внешний вид активной колонки после доработки, а также фрагменты внешнего и внутреннего монтажа показаны на ФОТО.


При экспериментах с компактной активной акустической системой (АС) "Genius SP-P110" было выяснено, что установленные в неё динамические головки способны на более качественное звучание, чем может обеспечить встроенный в неё двухканальный УМЗЧ. Эта АС относится к низшей ценовой категории, поэтому неудивительно, что производитель сэкономил на всём, на чём только можно было сэкономить. Поэтому с целью повышения качества звучания и повышения надёжности было решено доработать это устройство.

В первую очередь был изготовлен новый блок питания, схема которого показана на рис. 1. Старый, сильно гревшийся трансформатор с габаритной мощностью около 2 Вт удалён. Взамен него установлен более мощный и надёжный трансформатор ТС-БП-22 (от кассетной магнитолы советского производства). Сетевое напряжение 230 В поступает на первичную обмотку трансформатора T1 через замкнутые контакты выключателя SB1 и резистор R1, который выполняет защитную функцию. Варистор RU1 совместно с резистором R1 защищает трансформатор от превышения сетевого напряжения.

Рис. 1. Схема блока питания

С вторичной обмотки трансформатора T1 переменное напряжение 9...10 В через самовосстанавливаю-щийся предохранитель F1 поступает на мостовой выпрямитель, собранный на диодах VD1-VD4. Конденсатор C5 сглаживает пульсации выпрямленного напряжения, светодиод HL1 сигнализирует о наличии выходного напряжения. Межобмоточный экран и корпус трансформатора электрически соединены с минусовым проводом блока питания. Большинство элементов блока питания размещены на монтажной плате из нефольгированного текстолита размерами 30x60 мм (рис. 2). Применён проводной монтаж. Резистор R1 и варистор RU1 распаяны на контактах выключателя.

Рис. 2. Элементы блока на монтажной плате

УМЗЧ в АС SP-P110 собран на интегральной микросхеме TEA2025B, которая способна развивать мощность до 2,3 Вт в каждом канале. Вариант усилителя, реализованный производителем АС на этой микросхеме, развивал выходную мощность не более 0,2 Вт, а низкие звуковые частоты практически не прослушивались. Ещё одним неприятным бонусом была низкая чувствительность усилителя, недостаточная для воспроизведения фонограмм с карманных MP3-плейеров.

Поскольку микросхема TEA2025B способна на большее, было решено не изготавливать новый усилитель, а доработать имеющийся. Схема этого варианта УМЗЧ показана на рис. 3. Использована нумерация элементов, указанная на плате, обозначения дополнительно установленных элементов начинаются с префикса 1 . Конденсатор C12 (1000 мкФ) был заменён конденсатором большей ёмкости (2200 мкФ), C4 и C10 были заменены конденсаторами ёмкостью 470 мкФ (были по 220 мкФ). Аналогично конденсаторы C1 и С6 (0,22 мкФ) заменены конденсаторами ёмкостью 0,47 мкФ. Сопротивления резисторов R2 и R5 уменьшены до 100 Ом вместо 680 Ом, что увеличило коэффициент усиления УМЗЧ. Резистор R7 (560 Ом) заменён резистором сопротивлением 5,6 кОм.

Рис. 3. Схема доработанного УМЗЧ

Были переделаны и входные цепи УМЗЧ. Раньше входное напряжение поступало напрямую на регулятор громкости VR1, а после доработки - через RC-фильтры на элементах 1R12, 1С14и 1R13, 1C15, что защищает УМЗЧ от высокочастотных наводок. До доработки на выходе УМЗЧ динамические головки автоматически отключались при вставленном штекере головных телефонов, теперь их можно отключить с помощью кнопки SW1. Кроме того, сигнал на головные телефоны стал поступать через токоограничивающие резисторы 1R17, 1R18. Были установлены дополнительные блокировочные керамические конденсаторы 1C20, 1C21, 1C22. Выходная мощность доработанного УМЗЧ с новым источником питания - около 0,6 Вт в каждом канале.

Устройство было дополнительно оснащено стабилизатором напряжения +5 В, которое выводится на USB-гнездо 1XS1. К этому гнезду можно подключать различные мобильные устройства для их питания или зарядки встроенных аккумуляторных батарей. Стабилизатор собран на интегральной микросхеме 1DA2, резистор 1R15 уменьшает рассеиваемую микросхемой мощность. Стабилитрон 1VD2 защищает подключённую нагрузку от повышенного напряжения.

Поскольку в некоторых мобильных мультимедийных аппаратах общий вывод для подключения головных телефонов имеет электрический потенциал относительно общего минусового провода питания, для предотвращения повреждения таких устройств и обеспечения их работоспособности в разрыв общего провода УМЗЧ включены элементы 1R11, 1C13, 1R14.

В блоке питания можно применить диоды Шотки 1 N5819, MBRS140T3, MBR150, MBR340, BYV10-40, SB140. Диод 1N4003 можно заменить любым из серий 1 N4001-1 N4007, КД243, КД247. Светодиод может быть любого цвета свечения повышенной яркости. Варистор TVR10561 можно заменить варистором FNR-10K471, FNR-14K471, FNR-20K471, MYG20-471. Резистор R1 - импортный невозгораемый или Р1-7. Выключатель питания - кнопочный или клавишный, рассчитанный на коммутацию напряжения 230 В переменного тока, например, JPW-2104, RS-201-8C. Все неполярные конденсаторы - керамические импортные, оксидный - К50-35 или импортный. Взамен трансформатора ТС-БП-22 подойдёт унифицированный ТП-112-3.

В УМЗЧ применены резисторы С2-23 или импортные, оксидные и неполярные (керамические), конденсаторы - также импортные. Элементы стабилизатора напряжения установлены на дополнительной монтажной плате размерами 45x45 мм. Микросхема КА7805 установлена на дюралюминиевый теп-лоотвод размерами 68x40x2 мм, её можно заменить любой из серий 7805, 78M05. Доработанная плата УМЗЧ показана на рис. 4. На интегральной микросхеме U1 прикреплён дополнительный П-образный латунный теплоотвод площадью поверхности около 8 см 2 . Изначально тепло от этой микросхемы отводилось с помощью печатных проводников на печатной плате.

Рис. 4. Доработанная плата УМЗЧ

Размещение узлов в корпусах колонок показано на рис. 5. В одной колонке размещён блок питания с выключателем и индикаторным светодиодом, в другой - УМЗЧ с регулятором громкости, гнездо для подключения головных телефонов и выключатель динамических головок. Между собой колонки соединены четырёхпроводным мягким кабелем. По двум проводам поступает напряжение питания, по другим двум - сигнал с выхода УМЗЧ.

Рис. 5. Размещение узлов в корпусах колонок

Доработка УМЗЧ обеспечила улучшение качества звучания АС, он имеет более высокую чувствительность, а сама АС оснащена USB-портом. В результате звучание АС оказалось лучше, чем у компактных "кухонных" ЖК-телевизо-ров, ноутбуков, планшетов, других мобильных устройств. Были также намерения заменить безымянные динамические головки мощностью 1 Вт другими, мощностью 3...8 Вт, имеющими такие же габаритные размеры. К моему удивлению, "фирменные" динамические головки, изъятые из кинескопных (диагональ 51, 54 см) телевизоров, звучали заметно хуже.

Аналогично можно доработать и другие компьютерные активные АС, поскольку часто бывает так, что их производители с целью экономии не реализовывают заложенные в динамические головки и интегральные УМЗЧ потенциал.

При изготовлении нового блока питания надо строго выполнять правила техники безопасности, изложенные в статье "Осторожно! Электрический ток!" ("Радио", 2015, № 5, с. 54).


Дата публикации: 12.11.2015

Мнения читателей
  • Андрей / 18.12.2015 - 13:31
    А я влепил TDA2005 http://radiokot.ru/forum/download/file.php?mode=view&id=232341&sid=только конденсаторы C6 C7 развернуть

Для компьютерного пользователя ноутбук, несомненно, является удобным, компактным и достаточно функциональным прибором. Но, к сожалению, и данный аппарат не лишён изъянов.

Наверняка многие пользователи ноутбуков и нетбуков сталкивались с проблемой тихого воспроизведения звука через встроенные динамики этих аппаратов.

Если в условиях дома можно подключить внешнюю стереосистему, то вне домашних стен это бывает невозможно и приходиться ограничиваться наушниками. В таком случае речи о коллективном просмотре какого-либо фильма или сериала не идёт.

Как исправить ситуацию?

Исправить сложившуюся ситуацию помогут портативные компьютерные колонки с питанием от порта USB. Сейчас на прилавках магазинов огромный выбор данных приборов, но качество их может отличаться в разы.

Цена портативных компьютерных колонок с питанием от USB-порта достаточно низка и доступна широкому слою населения. Несмотря на это покупка данного устройства может быть и неудачной, так как качество воспроизведения звука такой системой оставит желать лучшего. Как ни странно, но среди дешёвых аппаратов данного класса попадаются приборы весьма хорошего качества, как по дизайну, так и по качеству звуковоспроизведения.

Проведём “вскрытие” портативной акустической системы с питанием от USB-порта и изучим электронную начинку данного прибора. С точки зрения радиолюбителя любопытно узнать, из каких электронных компонентов собираются подобные устройства. Полученные знания могут пригодиться при самостоятельном конструировании портативных звуковых колонок с питанием по USB или их ремонте.

Разборке подвергнем портативные мультимедийные USB колонки марки Sven 315 . Несмотря на их дешевизну, данная модель портативных колонок показала хорошее качество воспроизведения и звуковую мощность, достаточную для озвучивания небольшого помещения.


Разборка компьютерных USB колонок

Разбираются портативные колонки легко. Чтобы вскрыть корпус необходимо аккуратно снять переднюю декоративную панель.



Для того чтобы достать печатную плату усилителя необходимо выкрутить фиксирующую гайку, которая скрыта под пластмассовой ручкой регулятора громкости. После этого электронную плату можно свободно вынуть из корпуса.

Электронная начинка

Состав электронной начинки прибора оказался довольно прост. На небольшой по размеру печатной плате смонтирована интегральная схема стереофонического усилителя на базе микросхемы LM4863D . При напряжении питания в 5 вольт данная микросхема может выдать по 2,2 Вт выходной мощности на канал при сопротивлении звуковой катушки динамика в 4 Ом. На основании описания (datasheet) коэффициент нелинейных искажений + шум (THD+N ) при максимальной выходной мощности составляет 1%.


Плата усилителя и динамик

На основании этих данных можно сделать вывод о том, что на базе микросхемы LM4863D можно собрать довольно неплохой стерео усилитель с низковольтным питанием (5V) и выходной мощностью 2 Вт на каждый канал. Многие, кто ещё не знаком с современными микросхемами считают, что вместо LM4863D подойдёт TDA2822. Это заблуждение! TDA2822 очень прожорлива (по сравнению с LM4863) и на максимальной мощности выдаёт сильные искажения сигнала. Также оптимальное питание для TDA2822 около 12 вольт, что для портативной техники не есть хорошо. TDA2822 можно рекомендовать как легкодоступную замену, если в наличии нет LM4863. Такое может случиться, например, при ремонте.

Стоит отметить, что микросхема LM4863 разрабатывалась специально для компактных систем, поэтому микросхема требует минимум внешних элементов (так называемой обвязки). Микросхема выпускается в разных корпусах, от привычного DIP, до компактного SOIC.

Если возникнет желание самостоятельно собрать усилитель на базе микросхемы LM4863, то можно столкнуться с проблемой. Найти на радиорынках данную микросхему не так уж легко (так было на момент написания данной статьи). А вот на сетевых торговых площадках найти такую микросхему не составило труда. Например, в интернет-магазине AliExpress.com микросхему LM4863 легко найти во всевозможных корпусах и любом количестве. Цена 1 микросхемы менее 1$, если покупать сразу штук 10.

Как купить радиодетали на Aliexpress, я рассказывал .

Кроме самой микросхемы усилителя на печатной плате установлен разъём для подключения пассивной звуковой колонки (без встроенного усилителя), сдвоенный переменный резистор для регулировки входного звукового сигнала и электролитический конденсатор . Со стороны печатных проводников монтажной платы установлены SMD элементы обвязки, которые необходимы для работы интегрального усилителя. Питание микросхемы осуществляется от разъёма USB, который подключается к любому свободному порту ноутбука или стационарного компьютера.

Типовая схема подключения микросхемы LM4863 взята из описания (datasheet"а) на данную микросхему и показана на рисунке.


Типовая схема включения микросхемы LM4863 (взято из описания)

По типовой схеме включения микросхемы LM4863 видно, что она способна работать и на обычные наушники (Headphone ), сопротивление которых составляет 32 Ом. В микросхеме предусмотрена схема определения подключения наушников и для реализации этой функции отведён 16 (HP-IN) вывод.

Для тех, кто разбирается в электронике и datasheet’ы на английском языке их не пугают, могут легко микросхемы LM4863 в интернете на сайте alldatasheet.com.

Схема усилителя портативных USB колонок

Принципиальная схема усилителя сведена вручную с печатной платы компьютерных USB колонок Sven-315. На схеме показан один конденсатор C2 вместо двух (C7,C9), которые реально присутствуют на печатной плате (см. ниже). Сделано это потому, что на печатной плате конденсаторы соединены параллельно (C7 и C9), и на сведённой схеме конденсатор C2 указывает на общую ёмкость этих двух конденсаторов.


Принципиальная схема усилителя на базе LM4863D (сведена вручную)

Как видим, типовая схема из описания отличается от той, что сведена вручную с печатной платы усилителя компьютерных колонок. На схеме отсутствуют элементы, которые устанавливаются в случае добавления в схему разъёма для наушников. В остальном схема соответствует типовой, приведённой в описании на микросхему LM4863.


Размещение элементов на печатной плате

Если планируется использовать портативные колонки без ноутбука, например, совместно с MP3-плеером, то для питания колонок вполне подойдёт 5-ти вольтовый адаптер питания. Главное, чтобы адаптер питания смог обеспечить достаточный ток нагрузки (как оценочный грубый ориентир: стандартный ток нагрузки для портов USB – не более 500 mA). Согласно описанию на микросхему LM4863 максимальный ток покоя (когда на микросхему не подаётся звуковой сигнал) составляет 20 mA. Естественно, при воспроизведении потребляемый ток будет выше.

На фото показан вариант запитки портативных колонок SVEN-315 от 5-ти вольтового адаптера, который используется для зарядки плеера iPod. Максимальный ток нагрузки адаптера 1А чего с лихвой хватает для штатной работы портативных колонок.

Как выяснилось, качественное звуковоспроизведение портативных колонок SVEN-315 заключается в рациональном исполнении корпуса. Как известно, на качество звуковых акустических систем влияют не только применяемые в них громкоговорители, но и корпус. Чтобы убедиться в этом, достаточно вытащить динамик из корпуса и включить воспроизведение. Качество и звуковая мощность воспроизведения окажутся намного хуже. Данное замечание сделано не случайно, поскольку было проведено сравнение качества звуковоспроизведения портативных колонок SVEN-315 и аналогичных, но более дорогих USB колонок SVEN PS-30.

Несмотря на тот факт, что звуковые колонки SVEN PS-30 смонтированы на базе интегрального USB аудио чипа CM6120-S в составе которого 16-ти битный ЦАП и звуковые усилители класса D, качество их звуковоспроизведения субъективно (на слух) гораздо хуже из-за плохого исполнения корпуса акустической системы.

Корпус портативных колонок SVEN-315 изготовлен из ABS-пластика. Возможно, именно конструкция корпуса и позволяет “выжать” из малогабаритных динамиков все их скромные возможности.

    Какую информацию можно найти в сервис мануале (инструкции)
    Сервис мануал (инструкция) содержит в себе информацию, относящуюся к обслуживанию и мелкому ремонту того или иного оборудования. Как правило, Вы получаете сервис мануал для Вашего устройства при его покупке. Кроме того, на сегодняшний день существует множество Интернет ресурсов, предоставляющих инструкции для устройств различных моделей и марок.

    Что такое схемы?
    Схемы и схематические диаграммы являются неотъемлемой частью электротехнической промышленности, так как они представляют собой наглядное описание конструкций тех или иных устройств. Схемы необходимы для обслуживания и ремонта различного оборудования и электромеханических систем.

    Использование руководств (инструкций) по ремонту.
    Руководства (инструкции) по ремонту для того или иного устройства обычно выпускаются независимыми издательствами, не имеющими отношения к официальным производителям оборудования. Это не те инструкции, которые изначально поставляются вместе с приобретаемой техникой. Хотя в целом информация, содержащаяся в руководствах по ремонту, схожа с той, которую можно найти в обычной инструкции, между данными документами есть явные различия. Дело в том, что руководства по ремонту обеспечивают нас более детальной, полной и специфичной информацией.

© 2024 giperdveri.ru
Ремонт. Остекление. Двери. Утепление. Дизайн