Конструкция отстойников для очистки сточных вод. Отстойник для воды: основные виды и устройство

Практически любое предприятие просто обязано заниматься очисткой сточных вод, что образуются при производстве. Это обязательный принцип для всех.

Сточные воды после производства имеют довольно ядовитую структуру, и оставлять их просто так запрещено. Для очистки используются различные методы и оборудование, которое мы сейчас перечислим, а также разберем его особенности, принцип работы и нюансы эксплуатации.

1 Общий принцип построения очистных сооружений

Очистка хозяйственно бытовых сточных вод бывает разная. В данной статье мы рассмотрим отстойники нескольких видов.

1.1 Песколовки

Отстойники песколовки устанавливается перед первичными отстойниками, но уже после решеток, и производительность очистного комплекса должна быть не ниже 100 м 3 /сутки.

Как видно, название выражает сам принцип действия – после прохождения сточных вод сквозь решетки под действием силы тяжести шлак оседает на агрегатно не связанный песок (мелкие частицы стекла).

Но существует еще и механически связанный песок из органических твердых примесей, он осаждается вместе с массой агрегата, который его окружает, и поэтому у него низкая гидравлическая крупность. Выведение связанного песка требует разрушение агрегата.

Песколовки делятся на:

  • Вертикальные – стоки перемещаются снизу вверх;
  • Горизонтальные – сточные воды двигаются прямолинейно;
  • Тангенциальные – стоки вращаются винтовыми движениями (снаружи - вниз, а внутри - вверх);
  • Щелевые;
  • Аэрируемые отстойники.

Горизонтальные песколовки стоки очищаются благодаря движению горизонтального потока со скоростью 0,1 м/сек. Такие песколовки должны быть в 5 раз больше своей ширины. Работают вертикальные песколовки так: осаждение происходит во время подъема стоков снизу вверх со скоростью 0,05 м/сек.

Эти отстойники для производственных отходов обычно строят двухсекционными, чтобы, когда изымается песок, очистка хозяйственно бытовых сточных вод не прекращалась.

Сравнение горизонтальной и вертикальной песколовки акцентирует внимание на правильном выборе и распределении нагрузки. Зольность песка в вертикальном отстойнике песколовки гораздо выше, а строительный объем должен быть больше при одинаковом расходе.

Горизонтальные песколовки лучше небольших объемов, как и те, у которых рабочая жидкость отделена глухими перегородками от приямков для грунта и других осадков. Песколовки с круговым движением сточных вод экономичнее горизонтальных с такой же выработкой.

Их целесообразнее применять для станций с суточной производительностью до 120 тыс. м3. Отходы песка и твердых пород потом используют вторично, например, при постройке дорог. А щелевые песколовки в основном используют на каналах.

1.2 Аэраторы и аэротенки

Аэраторы – это прямоугольные резервуары с перегородками. Эти разделительные перегородки служат для того, чтобы путь сточных вод был длиннее. Благодаря им не только удаляется весь жир, но и происходит осветление жидкости.

В аэрируемых песколовках стоки очищаются благодаря трубе с отверстиями вдоль всей стены конструкции. По этой трубе в течение 15-30 минут подается сжатый воздух, благодаря чему жидкость, движущаяся через песколовку, вращается и песок очищается от органики.

Аэротенки – прямоугольного сечения резервуары, в которых активный ил смешивается со сточными жидкостями. Аэротенки, основной задачей которых является культивирование микроорганизмов, способствующих окислению и изъятию органических загрязнений, используются в промышленности.

Впрочем, и в быту аэротенки часто встречаются, только их уменьшают в размерах и приспособляют для бытового применения.

Аэротенки - одни из самых лучших сооружений биохимической очистки вод. Вводимый механическими или пневматическими аэраторами кислород способствует жизнедеятельности очень важных бактерий. Аэротенки строят для полной и неполной биологической очистки.

Основные виды аэротенков:

  • Аэротенки вытеснители работают так – возвратный ил и сточная вода подаются с торцовой стороны сооружения с одного боку, а выпускается с другой стороны. Целесообразно применять при загрязнении стоков 300 мг/л;
  • Аэротенки с рассредоточенной подачей — сточная вода подается сразу в нескольких точках, а выводится только в одном месте на торцовой стороне;
  • Аэротенки смесители — подача и выпуск происходит вдоль коридора по всей длине аэротенка. Эти лучше всего применять при концентрации грязи 1000 мг/л.

Какие отстойники строить зависит от нескольких факторов: выбор метода очистки воды от песка и требуемая скорость очистки, а также желаемых объемов, а выбор песколовки зависит от компоновки сооружения по высоте, а также требований к качеству очищенной жидкости.

1.3 Флотаторы

Флотация бывает вакуумной, импеллерной, напорной. Также нельзя забывать об электрофлотации. Она является физико-химическим методом.

К физико-химическим относят также:

  • Эвапорацию;
  • Флотация;
  • Сорбцию;
  • Нейтрализацию;
  • Гиперфильтрацию и многие другие.

Физико-химическая методика очищения сточных жидкостей требует предварительного глубокого выделения взвешенных веществ, для этого лучше всего подходит коагуляция.

В последнее время физико-химические методы становятся все популярнее в использовании благодаря появлению оборотных .

Флотатор делают из стали AISI 304 разных не стандартизированных типоразмеров производительностью от 5 до 100 м 3 /ч. В комплект также входят оборудование для смешивания реагентов и .

Внутри флотационной камеры происходит образование флотокомплексов, которые всплывают пеной на поверхность. Сверху на флотатор устанавливается скребок, который отправляет флотошлам в желоб. В низу емкости флотатор оборудован штуцерами, через которые удаляется все ненужное.

Их предназначение очистка стоков от гидрофобных и поверхностно активных загрязнений (нефтепродукты, жиры и прочее). Флотатор предпочтительнее устанавливать на пищевых, целлюлозно-бумажных и нефтеперерабатывающих предприятиях.

В составе физико-химического комплекса по очистке флотатор применяют как для частичной, так и полной очистки стоков. Флотатор имеет специальную камеру, в которой сточная вода смешивается с подающейся туда же под давлением водо-воздушной смесью.

Давление передается жидкости, и из пресыщенной смеси образуются пузырьки газа. Эта пена и есть флотокомплекс, всплывающий на поверхность. Далее 30% очищенной воды отделяется для приготовления водо-воздушной смеси через насос, а остальная пена снимается скребком и удаляется через желоб.

Образование флотокомплексов можно интенсифицировать, применяя флокулянты и коагулянты, которые активизируют процесс флотации.

Если в сточных водах есть компоненты загрязнения требующие агрегации, использовать флотатор без предварительных этапов очистки не рекомендуется. Из-за высокой турбулентности агрегаты частиц уничтожаются, и эффективность процесса очистки снижается.

Флотационная машина применима, если температура сточных жидкостей примерно 30-60 0 С, хотя некоторые специалисты считают, что флотационная технология в этом случае не очень эффективна.

Достоинства флотации трудно переоценить: непрерывность процесса, селективность выделения примесей, широкий диапазон применения, сравнительно с отстаиванием процесс ускорен, рекуперация удаляемых веществ, высокая степень очистки (95-98%).

2 Химические методы очистки сточных вод

Теперь рассмотрим Химические методы очистки сточных вод. Существует несколько самых популярных способов, которые мы сейчас и перечислим.

Способы нейтрализации при химической очистке:

  1. Нейтрализация кислых и щелочных сточных вод путем смешивания;
  2. Нейтрализация стоковых загрязнений растворами кислот, кальцинированной содой N8003, негашеной известью СаО, гашеной известью Са(ОН) 2, аммиачными растворами, каустической содой каона № ЕИ4ОН и прочими реагентами.

Очистка сточных жидкостей от сульфатов на производственных очистных сооружениях гальваностоков, горнорудной и химической промышленности, происходит путем добавления алюминиевой соли, извлеченной из кислого раствора, гидроокиси алюминия, обязательно аморфной структуры и вводить нужно дробно.

Первая доза составляет 10-25%. Воду доводят до рН=12.7-13.0, непрерывно перемешивая осаждения ионов SO4 2- , переводя в твердую фазу.

Способ очищает сточные жидкости высокого загрязнения производственных отходов при помощи сульфатов натрия до предельной величины ионов SO4 2- не более 100 мг/дм 3 и не более 500 мг/дм 3 для сброса их в водоемы.

Этот метод очистки производственных сточных вод считается оптимальным и популярен на большинстве предприятий.

2.1 Флокулянты

Синтетические полимеры флокулянты - это вещества, которые, попадая в дисперсные системы или коллоидные, химически связываются с частицами дисперсной фазы и связывают их в агломераты. В производственных процессах очень широко используются флокулянты для промышленных стоков.

Катионные флокулянты – благодаря химическому взаимодействию анионов и катионов под названием «хемосорбция» способствуют флокуляции находящихся на поверхности частиц за счет нейтрализации отрицательного заряда.

Это помимо способности, которой обладают флокулянты, закрепляться на поверхности частиц с помощью водородных связей. Таким же образом действуют и анионные флокулянты.

Анионные флокулянты лучше всего справляются катионами металлов и гораздо эффективнее выводят их в осадок. Анионные флокулянты в основном используются в металлургической промышленности, на линиях гальванических производственных нужд.

2.2 Фильтры

Для улучшения качества доочистки сточных вод используют фильтрующие биоматериалы: , щебень, керамзит, шлак, гальку – это капельные . Они действуют непрерывно, пропускная способность 1000 м 3 /сут. Они осуществляют полную биологическую очистку производственных сточных вод (до БПК2о 15 мг 02/л).

Фильтры делят на две категории: с плоскостной и объемной загрузкой. Фильтры с плоскостной загрузкой наполняют разными видами пластмассы, способными выдержать температуру 6-30 0 С без потери прочности, а также полимерную вату или полипропиленовые волокна – это называется микрофильтрация.

Самого материала в фильтровальной колонке должно быть 148-154 кг/м3, такие фильтры увеличивает скорость фильтрации до 3,0-3,5 м/час. Но иногда меньше, если в производственных нуждах не требуется повышенной скорости.

В процессе эксплуатации фильтры загрязняются и если вовремя не промыть наполнитель или фильтры целиком, то может произойти закупорка. Первый признак того, что фильтры требуют промывки - это снижение скорости фильтрации.

2.3 Демонстрация работы аэротенка (видео)

Множество промышленных предприятий имеют отходы производства, которые нельзя утилизировать путем выброса в окружающую среду. Подобные опасные вещества подлежат хранению в специальных сооружениях - отстойниках , где они не способны причинить значительный ущерб экологии. Но, какими бы большими промышленные отстойники ни были, они рано или поздно наполняются, и процессы производства на предприятиях прекращаются. Остановка работы грозит значительными издержками, а так же потерей части клиентской базы.

Решить проблему переполнения позволят мероприятия по очистке промышленных отстойников . Как правило, такие работы производятся путем перекачивания отходов мощными шламовыми насосами в новые отстойники, или предназначенные для этого территории. С помощью последовательно установленных насосных станций, перекачивание жидких отходов происходит по заранее подготовленному трубопроводу на расстояние до нескольких десятков километров. Забор же отложений производится с берега, первым шламовым насосом, или с помощью находящегося в отстойнике землесосного земснаряда .

Для проведения работ по очистке отстойников Вы можете обратиться в компанию Гидрострой. Благодаря большому опыту в сфере гидромеханизированной транспортировки грунтов, мы имеем возможность организовать откачку и подачу жидких отходов на расстояние в десятки километров от точки складирования.

Обратившись к нам, Вы можете заказать следующие работы:

  • Очистка промышленных отстойников любых объемов;
  • Снижение уровня отходов для запланированного производственного цикла;
  • Создание карт намыва грунта ;
  • Монтаж грунтопроводов для периодического удаления отходов;
  • Проведение технического надзора и общее руководство очистными работами.

Удаление промышленных отходов - это одно из основных направлений организации Гидрострой. Наличие серьезного дивизиона насосной техники, а так же значительный опыт в сфере гидромеханизации, позволяет нам производить очистку отстойников любых размеров, любой степени сложности.

Отстаивание является наиболее простым и часто применяемым в практике способом выделения из сточных вод грубодисперсных примесей, которые под действием гравитационной силы оседают на дно отстойника или всплывают на его поверхность.

В зависимости от требуемой степени очистки сточных вод отстаива­ние применяется или в целях предварительной их обработки перед очист­кой на других, более сложных сооружениях, или как способ оконча­тельной очистки, если по местным условиям требуется выделить из сточ­ных вод только нерастворенные (осаждающиеся или всплывающие) при­меси.

В зависимости от назначения отстойников в технологической схеме очистной станции они подразделяются на первичные и вторичные. Пер­вичными называются отстойники перед сооружениями для биологичес­кой очистки сточных вод; вторичными - отстойники, устраиваемые для осветления сточных вод, прошедших биологическую очистку.

По режиму работы различают отстойники периодического действия, Или контактные, в которые сточная вода поступает периодически, при­чем отстаивание ее происходит в покое, и отстойники непрерывного дей­ствия, или проточные, в которых отстаивание происходит при медлен­ном движении жидкости. В практике очистки сточных вод осаждение Взвешенных веществ производится чаще всего в проточных отстойниках.

Контактные отстойники применяют для обработки небольших объе­мов сточных вод.

По направлению движения основного потока воды в отстойниках они делятся на два основных типа: горизонтальные и вертикальные ; разно­видностью горизонтальных являются радиальные отстойники. В горизон­тальных отстойниках сточная вода движется горизонтально, в верти­кальных - снизу вверх, а в радиальных - от центра к периферии.

К числу отстойников относят и так называемые осветлители. Одно­временно с отстаиванием в этих сооружениях происходит фильтрация сточных вод через слой взвешенных веществ.

Содержание нерастворенных примесей (взвешенных веществ), вы­деляемых первичными отстойниками, зависит от начального содержания и от характеристики этих примесей (формы и размера их частиц, плот­ности, скорости их осаждения), а также от продолжительности отстаи­вания. Основная масса грубодисперсных взвешенных веществ выпадает в осадок в течение 1,5 ч (см. рис. 4.2). Скорость осаждения и полнота Выделения из воды тонкодисперсных частиц зависят от их способности К агломерации.

Допустимое остаточное содержание взвешенных веществ - вынос из первичных отстойников - устанавливается в зависимости от типа био­логических окислителей для последующей очистки сточных вод. В соот­ветствии с этим принимается продолжительность отстаивания.

Из отстойников перед биофильтрами и аэротенками на полную очист­ку не должно выноситься взвешенных веществ более 150 мг/л. Продол­жительность отстаивания городских сточных вод в этом случае должна быть 1,5 ч.

Выбор типа, конструкции и числа отстойников должен производиться на основе технико-экономического их сравнения с учетом местных ус­ловий.

Вертикальные отстойники применяют обычно при низком уровне грунтовых вод и пропускной способности очистных сооружений до 10 000 м3/сутки. Горизонтальные и радиальные отстойники применяют независимо от уровня грунтовых вод при пропускной способности очист­ных сооружений свыше 15 000-20 000 м3/сутки. Радиальные отстойни­ки с вращающимся распределительным устройством применяют на стан­циях пропускной способностью более 20 000 м3/сутки при исходной кон­центрации взвешенных веществ не более 500 мг/л.

Основными условиями эффективной работы отстойников являются: установление оптимальной гидравлической нагрузки на одно сооруже­ние или секцию (для данных начальной и конечной концентраций сточ­ной воды и природы взвешенных веществ); равномерное распределение сточной воды между отдельными сооружениями (секциями); своевре­менное удаление осадка и всплывающих веществ.

Эффект осаждения зависит от высоты слоя воды, в котором происхо­дит отстаивание.

Глубина отстаивания Я в натурных сооружениях равна 2-4 м. В ла­бораторных условиях кинетика процесса отстаивания сточных вод обыч­но изучается при меньшей высоте слоя воды.

Госкомитетом по науке и технике и техническим советом стран-чле­нов СЭВ принято, что для сравнения результатов исследований, выпол­ненных разными авторами, эксперименты по отстаиванию взвешенных веществ в покое должны проводиться при высоте слоя жидкости H - = 500 мм, принимаемой за эталон.

Для агрегативно-устойчивых частиц принимается простое соотноше­ние, позволяющее пересчитывать время Т, необходимое для получения заданного эффекта очистки в отстойниках, по результатам лаборатор­ных исследований в цилиндрах эталонной высоты при продолжительно­сти T :

TIH ~ tlh При Э - Const,

Где Я - высота воды в отстойнике, м; h- высота воды в цилиндре, м. Для агломерирующих взвешенных веществ, преобладающих в сточ­ных водах, сохраняется пропорциональность продолжительности отстаи­вания высоте слоя, но эта зависимость не прямолинейна. В этом случае расчетная продолжительность отстаивания сточных вод в отстойнике Т глубиной Я может быть определена из продолжительности отстаивания их в лабораторных условиях T при высоте H по соотношению, предложен­ному Академией коммунального хозяйства им. К. Д. Памфилова и Мос­ковским инженерно-строительным институтом им. В. В. Куйбышева, в следующем виде:

Т = t (H /h )n , (4.58)

Где п- показатель степени, отражающий влияние агломерации: для хо­рошо сформированных скоагулированных хлопьев в сточных водах п - 0,5; для сточных вод газоочисток га=0,45; для го­родских сточных вод при концентрации взвешенных веществ до 400 мг/л п= 0,25, с увеличением начальной концентрации п воз­растает: например, при 600 мг/л п=0,3; для шахтных вод /г=0,35; для шерстомойных сточных вод « = 0,19...0,44 в зави­симости от количества жира и ПАВ в сточной воде. Однако не для всех видов сточных вод имеются достаточно полные опытные данные, характеризующие осаждаемость взвешенных частиц.

В тех случаях, когда данные отсутствуют и не могут быть получены по каким-либо причинам экспериментальным путем, отстойники рассчиты­вают по имеющимся данным для близких по составу сточных вод или применяют другие способы расчета (например, по нагрузке сточных вод в м /м2 поверхности отстойника).

Исходными данными при расчете отстойников на любую степень полноты выделения из сточных вод нерастворимых примесей, незави­симо от их вида, является: 1) объем сточных вод и начальная концент­рация в них взвешенных веществ Сь 2) допустимая конечная концент­рация Сг взвешенных веществ в отстоенной воде, принимаемая в соот­ветствии с санитарными нормами или обусловленная технологическими требованиями, как, например, при расчете первичных отстойников перед аэротенками на полную очистку и биофильтрами, когда С2 должна быть 100-150 мг/л; 3) условная гидравлическая крупность и0 частиц, кото­рые требуется выделить из воды; высота столба воды H в лабораторном цилиндре, в котором производится технологический анализ (отстаива­ние) сточной воды; 4) показатель степени п, отражающий влияние аг­ломерации взвешенных частиц при их осаждении.

Необходимый рабочий эффект осветления определяется из выраже­ния

Cl~~Cz юо. (4.59)

Соответственно этому эффекту принимаются наименьшая скорость осаждения (гидравлическая крупность частиц) и0, мм/с (табл. 4.17), или продолжительность отстаивания (см. рис. 4.26), по которым опре­деляются основные размеры первичных отстойников.

Эффект отстаивания сточных вод Э и происходящее при этом уплот­нение осадка влияют на экономичность и устойчивость работы очистных сооружений, особенно при биологической очистке сточных вод.

Увеличение выноса взвешенных частиц из первичных отстойников приводит к увеличению объема избыточного активного ила в аэротенках. Влажность активного ила (99%) значительно превышает влажность осадка (93-95%) из первичных отстойников. Это вызывает необходи­мость увеличения вместимости илоуплотнителей и всех последующих со­оружений для обработки избыточного активного ила.

В целях повышения эффективности работы отстойников, особенно при содержании в сточной воде взвешенных веществ более 300 мг/л, не­обходимо принимать дополнительные меры: а) добавлять к сточным во­дам химические реагенты - коагулянты, способствующие увеличению гидравлической крупности частиц примесей; б) добавлять хорошо оседа­ющие взвешенные вещества, в частности, активный ил, выполняющий роль сорбента и биокоагулянта; в) предварительно аэрировать сточные воды, что способствует флокуляции (хлопьеобразованию и укрупнению) находящихся в сточной воде мельчайших нерастворенных примесей.

Химические реагенты применяют главным образом при очистке про­изводственных сточных вод, биокоагуляцию и флокуляцию - при очист­ке бытовых сточных вод и их смесей с производственными водами.

1 - трубопровод для отвода сырого осадка и опорожнения; 2 и 4 - лотки площадью сечения соот­ветственно 800X900 и 600X900 мм; 3 и 14 - дюкеры для подачи сырой сточной воды соответственно D =700 И D =1000 Мм; 5 -впускные отверстия; 6 -- скребковая тележка; 7 - жиросборный хоток, й = =400 мм; 8 - ребро водослива; 9 - фронтальная тележка; 10 - жиропровод, 5=200 мм 11 - само­течный трубопровод для отвода сырого осадка и жира для опорожнения. 12 -аварийный дюкер площадью сечеиия 1200X1200 мм; 13 - самотечный трубопровод для отвода сырого осадка и опорож­нения, D - 200 мм; /5 -шиберы 400ХЬ00 мм; /б - дюкер для отвода осветленной воды, D =7 00 мм

Стицы uQ пбд действием СИЛЫ Тяжести и скорости горизон­тального движения воды V Вдоль отстойника (рис. 4.28). Траектория движения частицы направлена здесь по равнодей­ствующей этих двух скоростей.

При заданных величинах И, L и V можно найти такое зна­чение скорости осаждения и0, при котором равнодействую­щая пройдет через наиболее удаленную точку дна отстойни­ка г. В отстойнике будут за­держиваться лишь взвешенные частицы, имеющие скорость осаждения которая является наименьшей для данного отстойника. Ее назы­вают охватываемой скоростью, т. е. гидравлической крупностью тех наи-

Боле мелких взвешенных веществ, которые задерживаются отстойником указанной длины. Более мелкие частицы, скорость падения которых меньше и0, будут выноситься с водой.

Эффективность выпадения взвешенных веществ из сточной воды в первичных отстойниках характеризуется данными табл. 4.17.

Таблица 4.17

Эффективность выпадения взвешенных веществ из бытовых сточных вод в первичных отстойниках

При проектировании первичных горизонтальных отстойников для бытовых и близких им по составу производственных сточных вод ре­комендуется принимать расчетную глубину отстойной (проточной) части ~3 м (допускается 4 м), расчетную горизонтальную скорость потока V = 5...7 мм/с, длину отстойника L - VH / U 0 (здесь и0 - по табл. 4.17).

В табл> 4.18 даны размеры типовых горизонтальных первичных от­стойников.

Таблица 4.18

Основные параметры горизонтальных первичных отстойников

Высота борта отстойника над поверхностью воды обычно не превы­шает 0,4 м.

Между проточной и иловой частью отстойника предусматривается нейтральный слой высотой 0,4 м.

Ширина отстойника принимается в зависимости от способа удаления из него осадка, однако с таким расчетом, чтобы число отделений от­стойника было не менее двух. Обычно эта ширина не превышает 9 м. Ширину отстойника целесообразно увязывать с шириной аэротенков (б и 9 м), чтобы иметь возможность объединить эти сооружения в сек­ции.

Имеющиеся унифицированные сборные панели высотой 3,6 и 4,8 м для прямоугольных емкостей позволяют подобрать по глубине проточной части два типоразмера горизонтальных отстойников-3,2 и 4,4 м.

Осадок из отстойников удаляется под гидростатическим давлением и с помощью различных механизмов (скребков, насосов, элеваторов и др.).

Основными преимуществами горизонтальных отстойников являются: малая глубина, хороший эффект очистки, возможность использования од­ного сгребающего устройства для нескольких отделений. К недостаткам их относится необходимость применения большего числа отстойников вследствие ограниченной ширины.

Вертикальный отстойник (рис. 4.29) представляет собой круглый в плане резервуар с коническим днищем.

Сточная вода подводится к центральной трубе и спускается по ней вниз. При выходе из нижней части центральной трубы она меняет на­правление движения и медленно поднимается вверх к сливному желобу. При этом из сточной воды выпадают грубодисперсные примеси, плот­ность которых больше плотности сточной воды. Для лучшего распреде­ления воды по всему сечению отстойника и предотвращения взмучива­ния осадка опускающейся водой центральную трубу делают с растру­бом, ниже которого устанавливают отражательный щит.

Каждая частица нерастворенных примесей, поступившая в отстой­ник, стремится двигаться вместе со слоем воды вверх с той же скоро­стью V, с какой движется вода; в то же время под действием силы тя­жести она стремится вниз со скоростью и0, зависящей от размера и фор­мы частиц, их плотности и вязкости жидкости.

Сточная вода содержит механические примеси различной гидравли­ческой крупности, поэтому при протоке ее в отстойнике с какой-либо по­стоянной скоростью v частицы этих примесей будут занимать самые различные положения. Одни из них (при u0>v) быстро осаждаются на дно отстойника, другие (с U 0 = V ) находятся во взвешенном состоянии, третьи (с u0

Для бытовых сточных вод величину V принимают равной 0,7 мм/с. Продолжительность отстаивания зависит от требуемой степени осветле­ния сточных вод и принимается в пределах от 30 мин (перед полями фильтрации) до 1,5 ч (перед аэротенками и биофильтрами).

Уровень воды в отстойнике определяется гребнем переливного (сбор­ного) желоба, в который поступает отстоенная вода. Отсюда она на­правляется на последующую очистку. Взвешенные вещества, выделив­шиеся из сточной воды, образуют осадок (примерно 0,8 л/сутки по рас­чету на одного жителя), скапливающийся в иловой части отстойника, вместимость которой рассчитывают на двухсуточный объем осадка.

Осадок из вертикальных отстойников удаляют под действием гидро­статического давления через иловую трубу диаметром 200 мм, выпуск которой расположен на 1,5-2 м ниже уровня воды в отстойнике. Влаж­ность осадка 95%.

Вертикальные отстойники имеют преимущества по сравнению с го­ризонтальными; к числу их относятся удобство удаления осадка и мень­шая площадь, занимаемая сооружением. Однако они имеют и ряд недо­статков, из которых можно отметить: а) большую глубину, что повыша­ет стоимость их строительства, особенно при наличии грунтовых вод; б) ограниченную пропускную способность, так как диаметр их не пре­вышает 9 м.

При проектировании вертикальную скорость движения сточной воды

Рис 4 29 Первичный вертикальный отстойник диаметром 9 ч из сборного железобетона 1 -выпуск ила, 2 -выпуск корки, 3 -центральная труба с отражателем, 4 Водосборный ас юб, 5 - отводящий лоток. 6 - подводящий лоток

16-11 241

V принимают равной наименьшей скорости выпадения и0 той части взве­шенных веществ, на содержание которой рассчитывается отстойник; ве­личина и0 останавливается по графику осаждения взвешенных частиц. Расчетная площадь поперечного сечения отстойника равна площади поверхности воды в нем (в плане) за вычетом площади центральной трубы. Рабочей длиной (высотой) отстойника является расстояние от низа центральной трубы до поверхности воды.

Площадь F центральной трубы (или общую площадь всех труб, если имеется несколько отстойников) определяют по максимальному секундному расходу сточной воды Q , м3/с, и скорости в центральной трубе Vi, м/с:

1 - отражательный щит;

2 - раструб; 3 - централь­

Ug, MM ft

З Ь S6 7 в 9

Го 30 ЬО 50 60 70 80 30 Э,"/.

0,5

Ная труба

Скорость Vu обычно принимаемая равной 0,03 м/с, не должна пре­вышать 0,1 м/с при наличии отражательного щита.

Высота проточной части отстойника или длина центральной его трубы

H = Vt , (4.61)

Но не менее 2,7 м.

Общий объем проточной части всех отстойников (если их несколь­ко), м3,

W = QKt / 24, (4.62)

Где Q- средний суточный расход сточной воды, м3/сутки;

К- коэффициент неравномерности притока сточной воды. Общая рабочая площадь отстойников, м2,

Fx - W / H . (4.63)

Полную площадь (в плане) отстойников определяют как сумму по­лезной их площади Fy и площади F , занимаемой центральной трубой (или центральными трубами):

F = F!--f. (4.64)

Расчет вертикальных отстойников, согласно методу, предложенному проф. С. М. Шифриным, производится следующим образом. По требуе­мому эффекту осветления сточной воды с различными начальными кон­
центрациями в ней взвешенных частиц находят с помощью рис. 4.30 гидравлическую крупность частиц, которые должны быть выделены в проектируемом отстойнике. Затем по найденной величине и0у поль­зуясь рис. 4.31, определяют радиус отстойника г. Среднюю скорость вхо­да сточной воды в отстойную зону ив (скорость в сечении между раст­рубом центральной трубы и отражательным щитом) С. М. Шифрин рекомендует принимать равной 1,2 см/с.

При этом площадь живого сечения представляет собой боковую по­верхность цилиндра, диаметр которого равен диаметру раструба цент­ральной трубы, а высота равна размеру зазора, т. е. 0,25-0,5 м.

Диаметр центральной трубы D определяют по скорости нисходяще­го движения воды в ней, равной 0,03 м/с. Длину трубы, которая должна целиком размещаться в цилиндрической части отстойника, определяют по формуле (4.61).

Диаметр вертикального отстойника не должен превышать его рабо­чую глубину более чем в 3 раза.

Эффект осветления сточной воды в вертикальных отстойниках со­ставляет практически не более 40%, теоретически расчет ведется на эффект осветления 50%.

Число отстойников зависит от принятого конструктивного типа, диа­метра одного отстойника и расчетного расхода сточной воды. Полная строительная высота (глубина) отстойника Ястр определяется как сумма высоты проточной части, нейтрального слоя, иловой части (или камеры) и высоты борта над уровнем воды, принимаемой 0,3-0,4 м.

Высота иловой камеры зависит от ее объема и диаметра отстойни­ка. Расчетную вместимость иловой камеры определяют по объему выпа­дающего осадка и продолжительности пребывания его в камере.

Иловую часть отстойников выполняют конической (для круглых от­стойников) с углом наклона стенок днища 50°, чтобы обеспечить спол­зание осадка. Внизу конуса (или пирамиды) устраивают площадку диаметром 0,4 м.

Во избежание попадания в сток всплывших загрязнений перед сбор­ными лотками (периферийными и радиальными) устанавливают полу­погружные доски (щитки), расположенные на расстоянии 0,3-0,5 м от лотка; их погружают в воду на глубину 0,25-0,3 м от поверхности воды; высота непогруженной в воду части должна быть не менее 0,2-0,3 м.

Основные размеры типовых вертикальных отстойников из сборного железобетона приведены в табл. 4.19.

Таблица 4.19

Вертикальный отстойник новой конструкции с нисходяще-восходя­щим потоком сточной воды представляет собой круглый резервуар с периферийным лотком для сбора осветленной воды. Отличие этого от­стойника от типового заключается в том, что центральная труба замене-

Рис 4 33 Первичный вертикальный отстойник с нисходяще-восходящим потоком

1 - приемная камера 2-подающий лоток (или трубопровод), 3-трубопровод для удаления та вающнх веществ 4 - приемная воронка для удаления плавающих веществ, 5 -зубчатый Водослі"із 6 - отражательный козырек 7 - распределительный лоток 8 - периферийный лоток для сбооа осветленной воды, 9-отводящий трубопровод, 10 - отстойник, //-- кольцевая полупогружная пере городка 12 трубопровод для отвода ила

На не доходящей до дна полупогружной перегородкой, разделяющей площадь отстойника на две равные части, а впускное устройство вы­полнено на внутренней поверхности перегородки по всему периметру в виде переливного зубчатого распределителя с затопленным отража­тельным козырьком (рис. 4.33).

Сточная вода поступает по лотку (или по трубе) в приемную камеру, а затем в лоток, имеющий зубчатый водослив, из которого вода равно­мерно переливается и движется по периметру внутренней части отстой­ника. Отражательный козырек меняет направление движения воды с вертикального на горизонтальное. По мере продвижения от перегородки к центру вода опускается вниз, распределяясь равномерно по всему сечению внутренней нисходящей части отстойника. При движении сточ­ной воды вниз с малыми скоростями поток теряет свою транспортирую­щую способность, благодаря чему происходит осаждение взвешенных частиц. Интенсивное разделение жидкой и твердой фаз происходит на повороте потока. Далее вода движется восходящим потоком, перели­вается через борт сборного лотка и отводится через отводную трубу. Всплывающие вещества скапливаются у воронки и периодически уда­ляются через трубу. Осадок удаляется под гидростатическим давлением по иловой трубе.

Вертикальный отстойник этого типа увеличивает эффект задержания взвешенных веществ до 60-70% или при сохранении эффекта осветле­ния обычного вертикального отстойника увеличивает пропускную спо­собность примерно в 1,5 раза.

В Институте городского хозяйства МКХ УССР разработаны конст­рукции вертикальных отстойников с нисходяще-восходящим потоком для нескольких типоразмеров.

Радиальный отстойник представляет собой круглый в плане ре­зервуар (рис. 4.34). Сточная вода подается в центр отстойника снизу вверх и движется радиально от центра к периферии. Особенностью гид­равлического режима работы радиального отстойника является то, что скорость движения воды изменяется от максимального его значения в центре отстойника до минимального у периферии. Плавающие веще­ства удаляются с поверхности воды в отстойнике подвесным устройст­вом, размещенным на вращающейся ферме, и поступают в приемный бункер или в сборный лоток.

Выпадающий осадок с помощью скребков, укрепленных на подвиж­ной ферме, сдвигается в приямок отстойника. Частота вращения под­вижной фермы 2-3 ч-1; вращение осуществляется с помощью перифе­рийного привода с тележкой на пневмомашине. Осадок удаляется по трубопроводу с помощью плунжерных и центробежных насосов, уста­новленных в расположенной рядом насосной станции. Всплывающие ве­щества отводятся в жиросборник.

Осветленная вода поступает в круговой сборный лоток через один или через оба его борта, являющихся водосливами. В целях обеспечения более надежного выравнивания скорости движения воды на выходе из отстойника водосливы сборных лотков выполняют зубчатыми. Нагрузка на 1 м водослива не превышает 10 л/с.

В СССР радиальные отстойники строят диаметром 18-54 м (табл. 4.20), а на зарубежных очистных станциях - диаметром 6-60 м и более.

Радиальные отстойники применяют в качестве как первичных, так и вторичных. Отношение диаметра отстойника к его глубине у перифе­рийного водосборного лотка принимают от 6 до 12. Отстойники задер­живают до 60% взвешенных веществ.

1 - илоскреб 2 - распределительная чаша 3 - подводящий трубопровод 4 - трубопровод сырого осадка, 5 - жиросборник, 6- насосная станция, 7-отводящий трубопровод

Таблица 4 20

Диаметр отстойни ка, м

Глубина зоны отстаивания, м

Расчетный объем от стойной зоны, м3

Расчетная пропуск

Ная способность при 7=1,5 ч, м3/ч

Расчет первичных радиальных отстойников производится на макси­мальный часовой приток по продолжительности отстаивания, принимае­мой для бытовых сточных вод равной 1,5 ч.

Вместимость приямка для сбора осадка в отстойнике определяют по объему осадка, образовавшегося в течение 4 ч. Стенки приямка имеют наклон 60°, что облегчает сползание осадка.

В зависимости от объема выпавшего осадка скребковый механизм работает непрерывно или периодически. В последнем случае он вклю­чается за 1 ч до начала удаления осадка. Процесс удаления автомати­зирован. Влажность осадка равна 95% при самотечном удалении и 93,5% при удалении насосами.

Диаметр иловой трубы определяют расчетом, однако он должен быть не менее 200 мм. Высота бортов отстойника над поверхностью воды в нем обычно равна 0,3.

Преимуществом радиальных отстойников является небольшая глу­бина, что удешевляет их строительство. Круглая в плане форма позво­ляет устанавливать минимальные по толщине стенки, что также снижа­ет стоимость сооружений.

Независимо от производительности очистной станции минимальное число отстойников принимается с таким расчетом, чтобы на первую очередь строительства иметь не менее двух рабочих отстойников. Часто компонуют четыре отстойника в единый блок. Равномерное распределе­ние сточной воды между отстойниками осуществляется с помощью рас­пределительной чаши.

При выборе типоразмеров отстойников учитывается, что более круп­ные отстойники экономичнее по сравнению с малогабаритными.

Для повышения эффекта ОЧИСТКИ При БПКполн СТОЧНОЙ ВОДЫ б0ЛЄЄ 130 мг/л радиальный отстойник может иметь преаэратор, установленный в центральном распределительном устройстве.

Предварительная аэрация с избыточным активным илом городских сточных вод позволяет вывести из их состава при отстаивании соедине­ния хрома, меди, цинка в тонкодисперсном и коллоидном состоянии. Однако преаэрация сточной воды повышает влажность сырого осадка до 94,5% по сравнению с влажностью осадка при обычном отстаивании (93,5%).

Разновидностью радиальных отстойников являются отстойники с пе­риферийной подачей в них сточных вод (рис. 4.35). Основные парамет­ры таких первичных радиальных отстойников представлены в табл. 4.21.

Водораспределительный желоб опоясывает отстойник по окруж­ности и имеет постоянную ширину и постепенно уменьшающуюся от начала к концу желоба глубину. В дне желоба имеются круглые впуск­ные отверстия, расположенные так, что в сочетании с переменной глу­биной желоба, различными диаметрами отверстий и расстоянием меж­ду ними обеспечивается постоянная скорость движения воды в желобе.

Постоянство скорости предупреждает выпадение осадка в распреде­лительном желобе и создает благоприятные условия для транспортиро­вания плавающих веществ в сборник, расположенный в конце желоба. Поступившая из отверстий вода направляется вертикальной кольцевой перегородкой в нижнюю зону отстойника. Скорость нисходящего пото­ка постепенно уменьшается и достигает минимума у кольцевого отра­жателя, направляющего поток в центральную зону отстойника и далее к водоотводящему кольцевому желобу.

Небольшая скорость потока обусловливает начало выпадения взве­шенных веществ уже у выхода из-под кольцевой перегородки. Движе­ние воды происходит по всему живому сечению отстойника, при этом местные завихрения практически отсутствуют. Поступление осветляемой воды в отстойник у его дна обеспечивает кратчайший путь осаждения взвешенных веществ.

Отмеченные особенности гидравлического режима работы таких отстойников обусловливают более высокий эффект задержания

/ - подводящий канал; 2- трубопровод для отвода плавающих веществ; 3- отводящий трубоппо - вод; 4 - затвор с подвижным водосливом для выпуска плавающих веществ из лотка; 5 - струе - направляющие трубки; 6 - распределительный лоток; 7 - полупогружная доска для задержания плавающих веществ; 8 трубопровод для осадка

Таблица 4.21

Показатель

Отстойник диаметром, м

Гидравлическая глубина, м

Глубина зоны отстаивания, м

Отношение диаметра к глу­бине зоны отстаивания. . .

Рабочий объем, м3 . . . .

Подводящая система - рас­пределительный лоток:

Глубина в начале, м. .

То же, в конце, м. . .

Ширина, м................................

Глубина потока в начале, м

То же, в конце, м. . .

Скорость потока, м/с. .

Диаметр водовпускных труб, мм...... .

Расстояние между труба­ми, м

Отводящая система - сбор­ные лотки с зубчатым водо­сливом:

Периметр, м..... .

Диаметр отводящего тру­бопровода, мм........................

Диаметр илового приямка, м

Диаметр трубопровода сы­рого осадка, мм... .

Взвешенных веществ, чем в обычных радиальных отстойниках с подачей сточной воды из центра. Продолжительность отстаивания в отстойниках с периферийным впуском воды принимается меньше, чем в обычных от­стойниках, при одинаковом эффекте осветления сточных вод.

1 - подача сточной воды; 2- распределительная перегородка, 3 - направление движения воды к сборным лоткам; 4 - илоскребы; 5-отвод осад­ка; 6-выпуск осветленной воды

Радиальный отстойник с вращающимися водораспределительным и водосборным устройствами, предложенный И. В. Скирдовым и раз­работанный Союзводоканалпроектом, представлен на рис. 4.37. Основ­ная масса воды в отстойниках с такими устройствами находится в покое, поэтому осаждение взвешенных веществ в них происходит с такой же скоростью, как и в лабораторных условиях.

М

Подача воды в отстойник и отвод осветленной воды производятся с помощью свободно вращающегося желоба, разделенного продольной перегородкой на две части. С внутренней стороны лоток ограничен пере­городкой, снизу - щелевым днищем и снаружи - распределительной решеткой с вертикальными щелями, снабженной струенаправляющими лопатками.

Щелевое днище выполнено в виде жалюзийной решетки, через попе­речные щели которой проваливаются тяжелые частицы.

Струенаправляющие лопатки имеют обтекаемую форму и поворачи­ваются па любой угол; размещаются они таким образом, чтобы продол­жительность пребывания отдельных струй в отстойнике практически была одинаковой.

Водосборный лоток с затопленным водосливом имеет водонепрони­цаемые стенки и днище. Из лотка вода отсасывается сифоном в отвод­ной наружный желоб. Сифон снабжен регулятором расхода (дроссель­ным клапаном, связанным системой рычагов с поплавком). У днища водосборного лотка расположен направляющий козырек.

Необходимая продолжительность отстаивания t зависит от глубины зоны отстаивания h 0 и скорости осаждения и0 частиц, на задержание ко­торых рассчитывается отстойник, т. е. t = H 0 Ju 0 . Глубина h 0 зависит от конструкции водоприемных устройств; в случае применения лотков с затопленным водосливом она обычно принимается от 0,8 до 1,2 м.

Высоту нейтрального слоя принимают от 0,5 до 0,6 м, глубину слоя осадка Ли - от 0,3 до 0,4 м.

В течение времени t водораспределительный и водосборный лоток должен сделать один оборот. В этом случае им будет собрана отстояв­шаяся вода, объем которой

Q = KnR2h0t (4.65)

Где К- опытный коэффициент использования зоны отстаивания, рав­ный 0,85;

R - радиус отстойника.

Величиной Q характеризуется пропускная способность отстойника.

Гидравлический расчет водораспределительного и водосборного устройства сводится к определению формы (в плане) перегородки меж­ду приемной и распределительной частями лотка, необходимой глубины погружения кромки водосборного водослива, а также высоты перепада между уровнями воды в отстойнике и периферийном отводном желобе, обеспечивающей бесперебойную работу сифона. Форма перегородки в плане не зависит от расчетного расхода сточных вод.

При распределении воды с помощью решетки из равномерно рас­ставленных лопаток криволинейного очертания ширина водораспреде­лительного лотка Ьи м, определяется в зависимости от расстояния I, м, от центра отстойника по уравнению

Bi = n Vr2 - 12, (4.66)

Где п-отношение ширины водораспределительного лотка в его на­чале к радиусу отстойника R; величину п рекомендуется при­нимать равной 0,1-0,12.

Для сбора осветленной воды наиболее целесообразно применение за­топленных водосливов. При коэффициенте затопления 6 = 0,8 и коэффи­циенте расхода т=0,45 глубина погружения определяется по уравне­нию

H 0 = 1,24 (QIR 2 )2/ 3 12/3 , (4.67)

Где Q- пропускная способность отстойника, м3/ч;

R - радиус отстойника, м; /- длина (ширина) водослива, м.

Перепад между уровнем воды в отстойнике и водоотводящем пери­ферийном желобе

Tf>2/is, (4.68)

Где hs - потери напора в сифоне, определяемые по общим формулам гидравлики.

Величина реактивной силы зависит от массы подаваемой в отстойник сточной жидкости и скорости ее вытекания. При практически допускае­мых нагрузках на отстойники она обеспечивает бесперебойное движе­ние логка без применения каких-либо других (кроме реактивных) сил; во многих случаях реактивная сила оказывается достаточной для вра­щения не только собственно лотка, но и скребковой фермы.

Осветлитель с естественной аэрацией представляет собой верти­кальный отстойник с внутренней камерой флокуляции (рис. 4.38). Сточ -

/ Г

Ная вода поступает по лотку в центральную трубу, на конце которой прикреплен отражательный щит. Вследствие разницы уровней воды (0,6 м) в подводящем лотке и осветлителе происходит эжекция воздуха потоком сточных вод, поступающих в осветлитель. В камере флокуля - ции происходит частичное окисление органических веществ и усиленное хлопьеобразование, способствующее интенсификации процесса. Из камеры флокуляции сточная вода направляется в отстойную зону освет­лителя, в которой при прохождении через слой взвешенного осадка за­держиваются мелкодисперсные взвешенные частицы. Осветленная вода через кромку водослива переливается в периферийный лоток и далее в отводящий. Выпавший осадок под гидростатическим напором удаля­ется по трубе в иловый колодец. Плавающие вещества задерживаются внутренней стенкой сборного лотка и по мере накопления сбрасываются в иловый колодец по трубе через кольцевой лоток. В результате эффект очистки стоков в сооружении достигает 75%. Характеристика работы осветлителей приведена в табл. 4.22. Пропускная способность осветли­теля диаметром 9 м при продолжительности пребывания в нем сточной жидкости 1,5 ч - 53,6 л/с, а осветлителя диаметром 6 м - 23,6 л/с. Осветлители компонуются в блок из двух и четырех сооружений.

Тонкослойные отстойники представляют собой открытые и закры­тые резервуары. Как и обычные отстойники, они имеют водораспредели­тельную, отстойную и водосборную зоны, а также зону накопления осад­ка. Отстойная зона полочными секциями или трубчатыми элементами делится на ряд неглубоких слоев (до 15 см). Полочные секции монтиру­ются из плоских или волнистых пластин, удобных в эксплуатации. Труб­чатые секции характеризуются большей жесткостью конструкции, обес­печивающей постоянство размеров по всей длине. Они могут работать с более высокими скоростями, чем полочные секции, но быстрее заили­ваются осадками, труднее поддаются очистке и требуют повышенного расхода материалов.

Уменьшение высоты отстаивания обеспечивает снижение турбулент­ности, характеризуемое Re^500, и вертикальной составляющей пульса­ций потока сточной воды, вследствие чего повышается коэффициент использования объема и уменьшается продолжительность отстаивания (до нескольких минут). Реконструкция обычных отстойников в тонко­слойные позволяет повысить их производительность в 2-4 раза.

Для осаждения взвешенных веществ из воды в тонком слое как у нас в стране, так и за рубежом предложено большое число тонкослойных отстойников различных конструкций. Принципиальные схемы тонкослой­ных отстойников показаны на рис. 4.39. Основные схемы взаимного движе­ния воды и выделенного осадка следующие: перекрестная схема - когда выделенный осадок движется перпендикулярно движению рабочего по­тока жидкости; противоточная схема - выделенный осадок удаляется в направлении, противоположном движению рабочего потока (рис. 4.40);

Прямоточная схема - направление движения осадка совпадает с на­правлением водного потока.

Наиболее рациональной конструкцией тонкослойного отстойника сле­дует считать отстойник с противоточной схемой движения фаз, снабжен­ный пропорциональным распределительным устройством.

Рис 4 39 Трубча­тые секции, встро­енные в радиаль­ный (а) и в гори­зонтальный (б) тонкослойные от­стойники

Эти отстойники следует применять для очистки сточных вод, содер­жащих в основном оседающие примеси. Благодаря движению воды в

Наклонных секциях снизу вверх создаются благоприятные условия для осаждения взвешенных веществ по более короткой тра­ектории.

Осадок непрерывно сползает против дви­жения воды и в виде крупных агломератов осаждается в иловый приямок, из которого периодически удаляется через иловую тру­бу. Всплывшие вещества собираются в па­зухе между секциями и удаляются погружа­ющимся лотком. Плавающие вещества для сокращения объема воды, удаляемой с ни­ми, подгоняются к лотку воздушными стру­ями. Воздух подают перфорированные тру­бы, расположенные по периферии отстой­ника.

Расчет тонкослойного отстойника произ­водится в следующем порядке: 1. Площадь поперечного сечения полочного пространства вычисляет­ся по формуле

- Q / V , (4.69)

Где Q-расход сточной воды, м3/ч;

V- скорость потока сточной воды в секциях тонкослойного отстой­ника, м/ч.

Скорость v , м/ч, определяют из условия обеспечения ламинарного ре­жима течения воды в секциях по уравнению

V - 3600 Re %v/, (4.70)

Где Re- число Рейнольдса; должно быть менее 500; %-смоченный периметр секции, м;

©х-площадь поперечного сечения секции, м2; v- кинематическая вязкость, м2/с. Практически скорость движения воды в секциях принимают равной 10 и0, т. е. примерно 5-10 мм/с.

В=:<й/Н. (4.71)

Угол наклона полок равняется 45-60° в зависимости от угла сполза­ния осадка в воде.

3. Необходимую продолжительность отстаивания, ч, определяют из уравнения

Где и0 -гидравлическая крупность частиц, мм/с, осаждение которых обеспечивает требуемый эффект осветления сточной воды. Величину и0 определяют по кинетике осветления сточной воды в по­кое при высоте слоя отстаивания, равной высоте секции Hc в тонкослой­ном отстойнике. Минимальная высота hc должна приниматься с учетом способа удаления выпавшего осадка и необходимости обеспечения не - засоряемости секции, Hc = 50...150 мм.

4. Длину полочного пространства определяют из выражения

L = Ktpv ,

Где К - коэффициент запаса, равный 1,1 -1,5.

Общая строительная длина тонкослойного отстойника складывается из длины, необходимой для установки водораспределительных и водо­сборных устройств, и длины полочного пространства.

5. Объем иловой части отстойника определяют по уравнению

(С0 - Ct ) Q-100

(ioo -pL (4-73)

Где W-объем осадка;

С0- начальная концентрация взвешенных веществ в сточной воде;

Ct - концентрация взвешенных веществ в осветленной воде; Q- расчетный расход сточных вод; Р - влажность осадка, %"» рос - плотность осадка.

Для расчета отстойников сначала определяют их размеры, а затем уточняют значения расчетных величин. Одной из основных величин является средняя расчетная скорость в проточной части отстойника, при­нимаемая в первом приближении для радиальных (в сечении на поло­вине радиуса) и горизонтальных отстойников и = 5...7 мм/с, для от­стойников с вращающимся распределительным устройством и верти­кальных у = 0.

Длину горизонтальных отстойников определяют по формуле

VH

АГ

Радиус отстойников вертикальных, радиальных, с вращающимся распре­делительным устройством и с периферийным впуском - по формуле

Где v-средняя расчетная скорость в проточной части отстойника,

Н-глубина проточной части отстойника (от границы нейтрально­го слоя до уровня воды), м; К- коэффициент, зависящий от типа отстойника и конструкции водораспределительных и водосборных устройств; принимает­ся равным для горизонтальных отстойников 0,5, радиальных - 0,45, вертикальных - 0,35, для отстойников с вращающимся распределительным устройством -0,85; и0-скорость осаждения взвешенных частиц в отстойнике (гидрав­лическая крупность), мм/с; Q-расчетный расход сточных вод, м3/ч.

Гидравлическая крупность определяется по формуле

И --------------- і----- - о, (4.76)

0 at (KH /h )n " }

Где a- коэффициент, учитывающий влияние температуры воды на ее вязкость; принимается по табл. 4.23; t-продолжительность отстаивания в цилиндре со слоем воды Л, соответствующая заданному эффекту осветления, с; опреде­ляется экспериментально или принимается приближенно для основных видов взвешенных веществ по табл. 4.24; п-эмпирический коэффициент, зависящий от свойств взвеси, оп­ределяется экспериментально; w-вертикальная составляющая скорости движения воды в отстой­нике, принимается по табл. 4.25.

Таблица 423

Таблица 4.24

Продолжительность отстаивания сточных вод в покое в зависимости от эффекта осветления

Продолжительность отстаивания взвешенных веществ, с, в цилиндре глубиной 500 мм

Осветления, %

Примечания: 1. Продолжительность отстаивания дана для температуры воды 20 °С. Для промежуточных значении концентраций взвешенных веществ и эффекта осветления продолжитель­ность отстаивания определяется интерполяцией

2. Кинетика осаждения взвешенных веществ из сточной воды и показатели степени п должны определяться ари отстаивании в покое в сосудах диаметром не менее 120 мм.

Значение (KHjh ) N в расчетах первичных отстойников для городских сточных вод может приниматься по табл. 4.26.

После определения L и R для горизонтальных и радиальных отстой­ников уточняется значение и:

Где В - ширина отстойника, м; принимается в пределах 2-5 Я; для радиальных отстойников (в сечении на половине радиуса)

Таблица 4.26 Значения (KH(h)n

П для отстойников

Высота от­

Верти­

С вращающим­

Стойника

Ради­

Горизон­

Ся распредели­

Н, м

Каль­

Альных

Тальных

Тельным уст­

Ройством

Если уточненное значение значительно отличается от принятого ра­нее (при вычислении w ), величины L и R следует определять повторно с учетом полученного значения V.

Для отстойников с вращающимся распределительным устройством период вращения, ч, распределительного устройства определяется по формуле

T = nR *HK /Q . (4.77)

Объем удаляемого из первичных отстойников осадка определяется в соответствии с эффектом отстаивания сточных вод. Объем иловой ка­меры принимается равным объему выпавшего осадка за период не бо­лее двух суток.

В отдельных случаях при отсутствии достаточных данных, характе­ризующих кинетику осаждения взвешенных веществ, отстойники можно рассчитывать по нагрузке сточной воды на площадь зеркала отстойника Q или по скорости движения v И продолжительности отстаивания t , при­нимаемым по данным эксплуатации отстойников, осветляющих воду аналогичного состава. Для бытовых сточных вод q - 2...3,5 м3/(м2-ч), V - S ...7 мм/с и f=l...l,5 ч.

Гидравлический режим работы отстойников в значительной степе­ни влияет на эффект их работы. Чем совершеннее конструкция отстой* ника, тем выше эффективность задержания взвешенных веществ. Со­вершенство конструкций связано с условиями входа воды в отстойник, т. е. со скоростью входа воды и величиной заглубления кожуха в ради -

17-11

Альном или распределительной перегородки в горизонтальном отстой­нике. Гидравлический режим работы оценивается по коэффициентам объемного использования и полезного действия отстойников.

Коэффициент объемного использования отстойника определяется из­мерением скоростей течения воды по всей глубине отстойной зоны (в не­скольких сечениях) и установлением активной зоны, а коэффициент по­лезного действия - как отношение эффекта осветления в натурном от­стойнике к эффекту осветления на модели (в покое) при равной продолжительности отстаивания.

Эти коэффициенты в той или иной степени учитывают в расчетах. Так, при расчете горизонтальных отстойников [формула (4.74)] вводит­ся коэффициент /(=0,5 при определении их длины, в расчетах радиаль­ного отстойника [формула (4.75)] К ==0,45, а при расчете отстойника конструкции И. В. Скирдова коэффициент объемного использования принимается 0,85. Однако эти значения коэффициентов не описаны в ви­де математической зависимости. С этой целью кафедрой канализации МИСИ им. В. В. Куйбышева были проведены исследования на моделях и в натурном отстойнике. После математической обработки результатов опытов были получены следующие зависимости:

0,76 - 0,05 2 4- 0 ,11 H

1 + 0,00275,вх; (4"78)

/Со. и = 1 - 0,000825 (L/Я)3 -J - 0,02335 (L/Я)2- 0,1755 (ЫН), (4.79)

Где К"ои - коэффициент объемного использования, зависящий от глу­бины погружения распределительного устройства Л=0,25# и скорости входа воды увх (под распределительным устрой­ством vBX принимается в пределах 20-25 мм/с); К"оп - коэффициент объемного использования, зависящий от гео­метрического отношения длины отстойной зоны L или R к глубине Я.

Значение К"ол в уравнении (4.78) справедливо только при L / H - 10. В ином случае коэффициент объемного использования определяется по формуле

АГо. и =*o. H*S. e/*S. H. (4.80)

Где К°я- коэффициент объемного использования отстойника, опреде­ляемый по формуле (4.79) при L ( H -[ Q KnQVl-то же, но при любом значении L/Я, отличном от 10. Значения коэффициентов полезного действия т| находят в зависимо­сти от продолжительности отстаивания T , ч, которое определяется при технологическом анализе (рис. 4.41), /(ои и фактической вязкости сточ­ной воды р по формулам: для бытовых сточных вод

Ц=е »*к<>-*" . (4.81)

Для производственных сточных вод

Т=е VWp2 t <4.82)

Гдер. н, [хм - динамическая вязкость сточной воды соответственно в на­турном отстойнике и при технологическом анализе осветле­ния этих же сточных вод на модели;

Pi> Рз - плотность осадка соответственно бытовых и производствен­ных сточных вод.

3Н = 3МГ1, (4.83)

ГДе ^м - эффект осветления воды на модели (в покое); берется по рис. 4.42 при тех же значениях времени, при которых опре­делялся коэффициент полезного действия, т. е. при t = 0... ...1,5 toc (определяется в сосуде глубиной, равной глубине проектируемого отстойника).

Полученные данные наносят на график (рис. 4.43) и строят кривую зависимости эффекта осветления сточных вод Э от продолжительности отстаивания t для отстойника.

1 - находящейся в состоянии покоя (в подели); 2 - движущейся (в натуре)

По требуемому эффекту очистки сточных вод и графику 9=f {t ) для отстойника находится необходимая продолжительность отстаивания сточной воды в отстойнике tn .

30

60

20

Для горизонтальных отстойников

U ?! = ВН (L - /0), (4,85)

Где R -радиус отстойника, равный L , м;

Н - глубина отстойной зоны, м; следует принимать 1,5-3 м; В - ширина горизонтального отстойника;

10- расстояние от распределительного лотка до полупогружной доски в горизонтальном отстойнике. Определяем расход сточных вод, м3/ч, который должен быть подан на один отстойник:

Qi = WtJtBt (4.86)

Где їн- продолжительность отстаивания сточных вод, принятая по рис. 4.43.

В заключение определяется необходимое число рабочих отстойников:

N = Qo 6ui /Q 1 , (4.87)

Где Фобш-расход сточных вод, поступающих на очистные сооружения, м3/ч.

Для механической очистки применяется отстойник для воды.

На практике используют следующие типы:

  • песколовки;
  • нефтеловушки;
  • резервуары-отстойники;
  • напорные полые;
  • пруды-отстойники;
  • полочные отстойники.

Виды песколовок

Песколовка – это отстойники такого типа, где происходит очищение от частиц крупнее 250 мкм.

Первичные отстойники – это песколовки. Если не убрать песок, дальнейшая очистка сточных вод затрудняется тем, что песок будет забивать следующие очистные сооружения. Песколовка функционирует путём влияния на скорость движения твёрдых частиц в потоке воды.

Песколовки используют несколько вариантов очистки:

  • горизонтальное течение прямолинейное;
  • горизонтальное течение круговое;
  • вертикальное течение вверх;
  • винтовое течение (поступательно-вращательное)

По способу создания винтового течения бывает тангенциальное и аэрируемое сжатым воздухом.

На входе песколовки всегда находятся решётки для задержки крупных механических примесей.

Отстойник горизонтальный имеет дно с наклоном, тогда придонный поток воды замедляется, и песок, в основном там и находящийся, опускается на дно водоёма, потому что при расширении потока снижается его скорость. Оседающий песок накапливается, и убирается гидроэлеваторами.

Статические отстойники

Для отделения от воды различных загрязнений нефтепродуктами используют статические отстойники. Это длительный процесс, до двух суток . А поступление сточных вод весьма неравномерно.

Совместив несколько функций, двухъярусные отстойники, или эмшеры, позволяют одновременно отстаивать сточную воду, сбраживать и уплотнять выпавший осадок .

Поскольку их легко повторить, такая конструкции я имеет большую популярность. В основном она применяется для отстойников производительностью до 10 тыс. кубометров в сутки.

Это цилиндрическое сооружение с коническим дном. Вверху расположены осадочные желоба, а в нижней половине находится иловая камера, где работают гнилостные бактерии.

Выпавший осадок из осадочных желобов сползает по наклонным поверхностям через 15 см щель и падает в иловую камеру на дне. Устройство щели частично препятствует заражению очищенной воды продуктам гниения.

Заходит и выходит вода через водосливные и сборные лотки шириной на весь желоб. В начале желоба установлена полупогружная доска для равномерности распределения воды по сечению желоба. В конце – выходная доска для задержки на поверхности всплывших частиц.

Сброженный ил удаляется из септической камеры через трубу диаметром до 20 см. В трубе гидростатический напор 1,5-1,8 м. Осадок бродит, процесс имеет две фазы – это основное отличие от септиков.

Вертикальный отстойник имеет форму цилиндрического резервуара, сделанного из металла (иногда его делают квадратной формы). Форма днища – конусная или пирамидальная. можно классифицировать исходя из конструкции впускного устройства – центральное и периферийное. Чаще всего используется вид с центральным впуском. Вода в отстойнике движется в нисходяще-восходящем движении.

Принцип работы вертикального отстойника

Вода со стоков поступает в него через верхнюю часть конструкции и движется вниз по центральной вертикальной трубе к находящемуся там раструбу. Под трубой находится щит, который отражает и меняет траекторию движущейся воды с нисходящей на восходящую. В этот же момент в отстойной части в осадок очень интенсивно выпадают диспергированные частицы. Поток воды, который движется вверх перемещается через кромку для переливания воды и попадает в периферийный лоток, где собирается осветленная и очищенная вода. Осадок с помощью илопровода периодически очищается из отстойной части.

Перегородка, находящаяся перед гребнями противостоит загрязнению отбросами, которые часто всплывают в первичном отстойнике наверх. После этого загрязнения убирают вручную, используя скребок или совок и выкидывают в колодец, который находится вне конструкции устройства.

Применение отстойников

Вертикальный отстойник – это устройство, которое погружается в воду на максимальную глубину в 9 м. И если грунтовые воды находятся выше этой глубины использовать такое сооружение будет бесполезно.

Они устанавливаются в основном на небольших сооружениях для очистки сточных вод, объем которой не превышает 10000 м2 в сутки

Многие заводы и организации отдают предпочтения вертикальным отстойникам на своих сооружениях поэтому их разновидностей существует очень много – различные по размерам и конструкциям.

Почему вертикальный отстойник – это правильный выбор

Управлять ими легче, чем горизонтальными, они имеют упрощенную конструкцию. При нормальной работе, они могут удалить до 40% взвеси из сточных вод. Вертикальные отстойники легче монтировать, а стоимость у них гораздо ниже чем у горизонтальных. Водослив по периметру имеет большую длину и это позволяет значительно снизить скорость с которой движется вода, а это уменьшает вынос взвеси.

Принцип работы отстойников – уход и эксплуатация

  1. Чтобы осадок не сползал к центральной части днища, во время разработки проекта и строительства необходимо сделать уклон к горизонтальной поверхности внизу до 50 градусов.
  2. Необходимо тщательно сгладить внутреннюю часть отстойника.
  3. Днище лучше делать коническим, а не в форме пирамиды. Потому что в пирамидальной часто скапливается очень много осадков в углах, после чего они начинают бродить.

Но и после произведения этих действий, самой главной проблемой останется плохое сползание осадка, что и затрудняет эксплуатацию. Забродивший осадок начнет вырабатывать газ, который будет всплывать на поверхность первичного отстойника, а это в свою очередь увеличит вынос взвеси.

Нужно следить чтобы на поверхности не было корки, которая обычно образуется из веществ, состоящих из жира, масла. Она появляется из-за отбросов которые плавают на поверхности. Необходимо, чтобы она поступала в жиросборник.

Об осадках

Если в вашем отстойнике нет специального бункера, в котором собираются отбросы, его нужно как можно скорее изготовить и установить с помощью трубы, которую нужно присоединить к илопроводу. На этой трубе нужно установить перегородку и открывать её по мере большого накопления мусора. Все собравшиеся отбросы убираются из отстойника с помощью скребка или совка, после чего перегородка снова закрывается.

Осадок, который плохо сползает к днищу, также нужно проталкивать вручную. Совок или скребок можно изготовить самостоятельно. Длина ручки должна быть больше, чем длина вертикального отстойника. Из-за того, что ручка может быть в длину до 9 метров, вместе со скребком такая конструкция очень тяжелая и лучше всего не доставать её из отстойника. Вручную осадок нужно сталкивать один раз за смену – не реже чем каждые 12 часов. После того как осадок будет устранен со стенок, включится гидроэлеветор и осадок уйдет на утилизацию.

Что влияет на эффективность работы

Чтобы отстойник работал корректно, нужно позаботиться об оптимальном углублении вертикальной трубы, через которую проходят сточные воды и о расположении щита, который будет менять направление движения воды.

Длина центральной трубы может быть подобрана экспериментально. Чаще всего это происходит если много взвеси выносится на поверхность и необходимо подобрать все нужные характеристики исходя из количества этих веществ. Тогда удастся сделать очистку сточных вод более эффективной и стабильной на протяжение длительного времени.

Вас может заинтересовать:

    Пожарный резервуар - это место для размещения запаса воды для тушения возможного возгорания. Она должна отвечать требованиям по проектированию, указанным в СНиП 2.04.01-85 Внутренний водопровод и канализация зданий П.6. Этот объект обязательно, согласно вышеуказанной норме, должен быть возведен на территории промышленного предприятия. Для создания пожарного запаса воды могут использоваться искусственные и естественные водоемы,...

    Аппараты, механизм работы которых заключается в обмене теплом между двумя средами, имеют общее название – теплообменники. При этом их конструкции и сферы применения чрезвычайно разнообразны. В группу этих устройств входят испарители и парогенераторы, водонагреватели и пастеризаторы, конструктивные элементы систем кондиционирования и охладительного оборудования. Широкая потребность производства и частного сектора в...

    АГЗС - так называются станции для заправки автомобилей газом. На них в автомобили и другой автотранспорт заправляется сжиженный газ. Для доставки газа на станцию чаще всего используются специальные автомобили, оборудованные цистернами или магистраль, по которой газ подаётся в специальное хранилище. Газ, доставленный автомобилями, перекачивают под давлением в специальные приёмные ёмкости - криоцистерны. При их изготовлении...

    Проверки резервуаров, которые продолжительное время находились в эксплуатации, показывают, что их внутренняя и внешняя поверхность повреждена в результате воздействия коррозии. После проведения тщательного анализа следов коррозийных процессов было выявлено, что разрушение металла происходит неравномерно. В зависимости от вида коррозии, которая воздействует на определенный участок, повреждения могут иметь характерный вид и...

© 2024 giperdveri.ru
Ремонт. Остекление. Двери. Утепление. Дизайн